skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hefeida, Mohamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pneumonia is a high mortality disease that kills 50, 000 people in the United States each year. Children under the age of 5 and older population over the age of 65 are susceptible to serious cases of pneumonia. The United States spend billions of dollars fighting pneumonia-related infections every year. Early detection and intervention are crucial in treating pneumonia related infections. Since chest x-ray is one of the simplest and cheapest methods to diagnose pneumonia, we propose a deep learning algorithm based on convolutional neural networks to identify and classify pneumonia cases from these images. For all three models implemented, we obtained varying classification results and accuracy. Based on the results, we obtained better prediction with average accuracy of (68%) and average specificity of (69%) in contrast to the current state-of-the-art accuracy that is (51%) using the Visual Geometry Group (VGG16 also called OxfordNet), which is a convolutional neural network architecture developed by the Visual Geometry Group of Oxford. By implementing more novel lung segmentation techniques, reducing over fitting, and adding more learning layers, the proposed model has the potential to predict at higher accuracy than human specialists and will help subsidies and reduce the cost of diagnosis across the globe. 
    more » « less
  2. In the age of Big Genomics Data, institutions such as the National Human Genome Research Institute (NHGRI) are challenged in their efforts to share volumes of data between researchers, a process that has been plagued by unreliable transfers and slow speeds. These occur due to throughput bottlenecks of traditional transfer technologies. Two factors that affect the effciency of data transmission are the channel bandwidth and the amount of data. Increasing the bandwidth is one way to transmit data effciently, but might not always be possible due to resource limitations. Another way to maximize channel utilization is by decreasing the bits needed for transmission of a dataset. Traditionally, transmission of big genomic data between two geographical locations is done using general-purpose protocols, such as hypertext transfer protocol (HTTP) and file transfer protocol (FTP) secure. In this paper, we present a novel deep learning-based data minimization algorithm that 1) minimizes the datasets during transfer over the carrier channels; 2) protects the data from the man-in-the-middle (MITM) and other attacks by changing the binary representation (content-encoding) several times for the same dataset: we assign different codewords to the same character in different parts of the dataset. Our data minimization strategy exploits the alphabet limitation of DNA sequences and modifies the binary representation (codeword) of dataset characters using deep learning-based convolutional neural network (CNN) to ensure a minimum of code word uses to the high frequency characters at different time slots during the transfer time. This algorithm ensures transmission of big genomic DNA datasets with minimal bits and latency and yields an effcient and expedient process. Our tested heuristic model, simulation, and real implementation results indicate that the proposed data minimization algorithm is up to 99 times faster and more secure than the currently used content-encoding scheme used in HTTP of the HTTP content-encoding scheme and 96 times faster than FTP on tested datasets. The developed protocol in C# will be available to the wider genomics community and domain scientists. 
    more » « less